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Abstract

This paper addresses the problem of “H∞ almost synchronization” for homogeneous networks of general linear agents subject to external
disturbances and under directional communication links. Agents are presumed to be non-introspective; i.e. agents are not aware of their own
states or outputs, and the only available information for each agent is a network measurement that is a linear combination of relative outputs.
Under a certain set of conditions, a family of dynamic protocols is developed such that the impact of disturbances on the synchronization error
dynamics, expressed in terms of the H∞ norm of the corresponding closed-loop transfer function, is reduced to any arbitrarily small value.
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1 Introduction

The problem of synchronization in networks of dynamic sys-
tems has attracted enourmous attention in recent years and
possesses numerous applications in areas such as formation
flying, cooperative control, and distributed sensor fusion; see
e.g. (Olfati-Saber et al., 2007) and references therein. The
objective of synchronization in multi-agent systems is to find
a distributed algorithm to reach an agreement on a certain
quantity of interest which depends on the state of agents.

The seminal works of (Wu & Chua, 1995a) and (Wu &
Chua, 1995b) have substantially contributed in analysis and
design of multi-agent systems by introducing the application
of the graph theory and the Kronecker product. Moreover,
the works of Jadbabaie et al. (2003); Olfati-Saber & Mur-
ray (2004); Fax & Murray (2004); Moreau (2005), and Ren
& Beard (2005) have been instrumental in paving the way
that synchronization protocols have been developed. Also, Li
et al. (2010) extended conventional observers to distributed
observers with the aid of allowing agents to exchange their
protocol’s states. A thorough coverage of earlier work, in-
cluding static and dynamic protocols, the effect of commu-
nication delay, and dynamic interaction topologies may be
found in (Wu, 2007), (Ren & Cao, 2011), and (Cao et al.,
2013) and references therein. A recent research on output
synchronization of heterogeneous networks was presented
by Grip et al. (2012).
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1.1 The Topic of This Paper

In (Peymani et al., 2014), we introduced the notion of H∞

almost synchronization 2 , in which the impact of external
disturbances on the disagreement dynamics is attenuated to
any arbitrarily small value in the sense of the H∞ norm of
the closed-loop transfer function. Hence, synchronization
can be achieved with any degree of accuracy. The work of
Peymani et al. (2014) was concerned with heterogeneous
networks of introspective agents; i.e. the dynamics of agents
are non-identical, and agents have partial knowledge about
their own states in addition to network measurements, which
are based on relative information.

In this article, the problem of H∞ almost synchronization
is solved for homogeneous networks of non-introspective
agents; i.e. the network consists of identical agents which
are not allowed to access their own states or outputs, and
the only available measurement given to each agent is a
linear combination of the output of the agent relative to that
of its own neighbors. A practical motivation is a swarm of
autonomous underwater vehicles which do not measure their
absolute positions, but can exchange their relative distances.

We stress the fact that lack of self-measurements does not
allow us to shape the agents into the desired dynamics, as
proposed by Peymani et al. (2014). Hence, we are confronted
with general linear systems, where the finite and infinite zero
structures as well as invertibility properties are explicitly
exploited in order to achieve H∞ almost synchronization.

2 Historically, the term “almost” has been applied to the problem
of finding families of controllers that can reduce noise sensitivity to
any arbitrary level; see e.g. (Ozcetin et al., 1992) where the problem
of almost disturbance decoupling was addressed.
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Our design method is based on the time-scale structure
assignment technique (Ozcetin et al., 1992) rooted in the
methodology of singular perturbation (Kokotovic et al.,
1986). We propose a novel time-scale structure assignment
technique where infinite zero dynamics of different orders
are scaled with different time-scales. The motivation for
such a time-scale assignment is to make the design robust
with respect to the multiplicative uncertainty arising from
the interaction topology.

1.2 Other Related Work

Although synchronization of multi-agent systems has been
vastly studied in ideal conditions, relatively few references
concern synchronization in the presence of disturbances.
They mainly focus on homogeneous multi-agent systems
and utilize linear matrix inequalities to solve the H∞ opti-
mization problem over a network. Some only analyze the
disturbance attenuation properties of consensus protocols
and do not present a specific design procedure to solve the
problem of disturbance rejection in multi-agent systems.

Under bidirectional communication links, according to (Li
et al., 2010), the distributed H∞ control problem to achieve
a desired H∞ gain for the transfer function from disturbance
to each agent’s output is converted to the H∞ control prob-
lem of a set of independent systems. Using the pinning idea,
which implies a subset of agents have access to its own
states, Li et al. (2011b) introduced the notions of H2/H∞

performance regions, and proposed a static protocol that as-
sured an unbounded H∞ performance region. The works of
Li et al. (2010, 2011b) did not explore disturbance attenua-
tion from synchronization error dynamics. Shen et al. (2011)
introduced the notion of the bounded H∞ synchronization,
and Wang et al. (2013) defined the H∞ performance over a
finite horizon for a class of discrete time-varying multi-agent
systems subject to missing measurements and parameter un-
certainties. For complete and circulant networks, Massioni
& Verhaegen (2009) proposed a decomposition approach to
solve the distributed H∞ control problem for homogenous
multi-agent systems. For networks of non-introspective inte-
grators and introspective linear systems with full-state cou-
pling, Mo & Jia (2011) and Liu & Jia (2011) presented static
controllers to solve the H∞ control problem over a network.

For directed networks of first-order integrator systems, Lin
et al. (2008) proposed static H∞ controllers; extensions to
networks of introspective high-order multi-agent systems
were given in (Lin & Jia, 2010; Liu & Jia, 2010). For net-
works of introspective single-integrators, Hong-Yong et al.
(2011) proposed a consensus protocol by designing an ob-
server for disturbances generated by an exosystem. Consid-
ering networks of non-introspective agents possessing Lip-
schitz nonlinear dynamics and exchanging full-state infor-
mation according to communication topologies described by
strongly connected and balanced directed graphs, Li et al.
(2012) proposed a static protocol, which guaranteed a de-
sired H∞ performance. Moreover, Shen et al. (2010) and

Ugrinovskii (2011) studied the topic of H∞ distributed con-
sensus filtering.

Besides LMI-based H∞ consensus protocols, the following
articles investigate disturbance attenuation properties of con-
sensus protocols. The notion of leader-to-formation stabil-
ity (Tanner et al., 2004) was proposed to assess robustness
of followers with respect to the leader’s input for nonlin-
ear agents. Li & Zhang (2009) solved unbiased mean-square
average-consensus by introducing time-varying consensus
gains. For first-order dynamical systems under bidirectional
links where measurements are corrupted by bounded noise,
Bauso et al. (2009) proposed a static controller which guar-
anteed convergence of all states to a cylinder. Using non-
smooth finite-time consensus algorithms for networks of
double-integrators, Li et al. (2011a) and Du et al. (2012) pro-
vided an analysis for disturbance attenuation property of the
closed-loop system in the presence of external disturbances.

Hence, one observes a distinct lack of systematic approaches
to design synchronization protocols for networks of non-
introspective, general linear systems, coupled through par-
tial state information and under directional communication
links, which are capable of synchronizing the agents with
arbitrary accuracy in the presence of external disturbances;
this article aims to fill this gap.

1.3 Notations

Throughout the paper, matrix A is represented by A = [ai j]
where the element (i, j) of A is shown by ai j. KerA and
ImA denote respectively the kernel and the image of A. The
Kronecker product of matrices A = [ai j] and B = [bi j] is
defined as A⊗B = [ai jB]. Let ‖A‖ denote the induced 2-
norm. A block diagonal matrix constructed by Ai’s is shown
by diag{Ai} for i = 1, · · · ,n. Also, stack{Ai} for i = 1, · · · ,n
indicates [AT

1 ,A
T
2 , · · · ,AT

n ]
T, and x = col{xi} for i = 1, · · · ,n

is adopted to denote x = [xT
1 , · · · ,xT

n ]
T where xi’s are vectors.

The identity matrix of order n is symbolized by In. Let 1n ∈
Rn be the vector with all entries equal to one. The real
part of a complex number λ is represented by Re{λ}. The
open left-half and the open right-half complex planes are
represented by C− and C+, respectively. The H∞ norm of a
transfer function T (s) is denoted ‖T (s)‖∞. For a space V ,
the orthogonal complement is shown by V ⊥.

2 Homogeneous Multi-Agent Systems

A homogeneous multi-agent system is referred to a network
of identical multi-input multi-output agents described by

Agent i : ẋi = Axi +Bui +Gwi, yi = Cxi (1a)

in which i ∈ S , {1, · · · ,N}. Also, xi ∈ Rn is the state,
ui ∈ Rm is the control, yi ∈ Rp is the output, wi ∈ Rω :
limτ→∞

1
2τ

∫
τ

−τ
wT

i wi dt < ∞ is the external disturbance.
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The network’s communication topology, based on which
agents exchange information, is described by a directed
graph G whose nodes correspond with agents in the net-
work. If an edge exists from node k to node i, a positive
real weight aik is given to the edge. We assume that no self
loops are allowed; i.e. aii = 0. The graph G is associated
with the Laplacian matrix G = [gik] where gik = −aik for
i,k ∈ S, i 6= k and gii = ∑

N
k=1,k 6=i aik. It follows that λ = 0

is an eigenvalue of G with a right eigenvector 1N . Thus, the
network measurement given to agent i ∈S is:

ζ i = ∑
N
k=1 aik(yi−yk) = ∑

N
k=1 gikCxk (1b)

In addition, it is assumed that agents are capable of exchang-
ing additional information over the network. The transmis-
sion of this additional information conforms with the net-
work’s communication topology and facilitates the design
of a distributed observer for the network. Thus, agent i has
access to the following quantity:

ζ̂ i = ∑
N
k=1 gikηk (1c)

where ηk ∈Rp depends on the state of the protocol of agent
k ∈S; it will be clarified later when a dynamic protocol is
introduced. Agents are non-introspective and no self mea-
surements are available; in other words, agent i does not
have access to its own states xi or the output yi. Thus, the
only information available to agent i is the network measure-
ment ζ i, which is based on relative information, and neither
xi nor yi is measured.

3 H∞ Almost Synchronization

We define the following vectors which are formed by stack-
ing the corresponding vectors of each agent:

w , col{wi}, ζ , col{ζ i} (2)

for i ∈S. Let the mutual disagreement be defined as:

ei,k , yi−yk, for i,k ∈S, i > k (3)

The stacking column vector of all mutual disagreements is
denoted e. Obviously, synchronization is achieved if e= 0.
We define the following transfer function with the appropri-
ate dimension: e= Twe(s)w. The problem that we cope with
is precisely stated in Problem 1.

Problem 1 Consider a multi-agent system as described by
(1) with a communication topology G . Given a set of net-
work graphs G ∗ and any γ > 0, the “H∞ almost synchroniza-
tion” problem is to find, if possible, a linear time-invariant
dynamic protocol such that, for any G ∈ G ∗, the closed-loop
transfer function from w to e satisfies ‖Twe(s)‖∞ < γ .

For agent i∈S, the protocol, whose internal state is denoted
ξ i ∈ Rq for some integer q > 0, maps ζ i and ζ̂ i to ui and

takes the following general form{
ξ̇ i = Ac(ε)ξ i +Bc(ε)col{ζ i, ζ̂ i}
ui = Cc(ε)ξ i +Dc(ε)col{ζ i, ζ̂ i}

(4a)

(4b)

The matrices Ac(ε), Bc(ε), Cc(ε), and Dc(ε) are parame-
terized in terms of the tuning parameter 0 < ε ≤ 1. We will
specify these matrices in the subsequent subsections. We
will find an upper bound for ε , say ε∗, such that for any
ε ≤ ε∗, we obtain ‖Twe(s)‖∞ < γ . The controller is contin-
uous in ε , and adjustment of ε may be carried out online
to obtain the required accuracy of synchronization. Thus, it
turns out to a non-iterative (one-shot) design.

3.1 Preliminaries and Assumptions

The conditions under which the development of the desired
protocols is viable are given using the concepts from the ge-
ometric control theory and in terms of an appropriate set of
network graphs. The geometric control theory and its appli-
cation to exact disturbance decoupling are discussed in the
books of Wonham (1985) and Trentelman et al. (2001). The
application to almost disturbance decoupling is presented by
Weiland & Willems (1989).

Let V ∗KerC(A,B,C) be the maximal (A−BF)-invariant sub-
space of Rn contained in KerC such that the eigenvalues of
(A−BF) belong to C− for some F. The supremal Lp-almost
controllability subspace ‘contained’ in KerC is represented
by R∗KerC(A,B,C). Let S ∗

ImB(A,B,C) denote the minimal
(A−KC)-invariant subspace of Rn containing ImB such
that the eigenvalues of (A−KC) belong to C− for some K.
We define the following subspaces of the state space.

Vb,KerC(A,B,C) = V ∗KerC(A,B,C)⊕R∗KerC(A,B,C)

Sb,ImB(A,B,C) = (Vb,KerBT(AT,CT,BT))⊥

Assumption 1 We make the following assumptions.

(1) (A,B) is stabilizable, and (C,A) is detectable;
(2) ImG⊂ Vb,KerC(A,B,C);
(3) Sb,ImG(A,G,C)⊂ Vb,KerC(A,B,C);
(4) Sb,ImG(A,G,C)⊂ KerC;
(5) The matrix triples (A,B,C) and (A,G,C) have no in-

variant zeros on the imaginary axis.

The geometric subspaces can be computed by virtue of
the special coordinate basis proposed by Sannuti & Saberi
(1987) (reviewed in Appendix A) using available software,
either numerically (Liu et al., 2005) or symbolically (Grip
& Saberi, 2010).

Definition 1 For given β > 0 and integer N0 ≥ 1, Gβ is the
set of graphs composed of N nodes where N ≤ N0 such that
every G ∈ Gβ has a directed spanning tree, and the eigen-
values of its Laplacian, denoted λi for i = 1, · · · ,N, satisfy
Re{λi}> β for λi 6= 0. J
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A directed graph G has a directed spanning tree if it has
a node from which there are directed paths to every other
nodes. The Laplacian G associated with G ∈Gβ has a simple
eigenvalue at zero and the rest are located in C+, according
to (Ren & Beard, 2005).

3.2 Protocol Development

To solve Problem 1, we introduce a distributed observer-
based protocol parameterized in terms of a tuning parameter
ε ∈ (0,1] in the form of{

˙̂xi = (A−BFcon(ε))x̂i +Kobs(ε)(ζ i− ζ̂ i)

ui =−Fcon(ε)x̂i , i ∈S

(5a)
(5b)

where x̂i ∈ Rn; ζ̂ i is given by (1c) where η i = Cx̂i. We
present a step-by-step design procedure for determining the
gains Fcon(ε) and Kobs(ε). The algorithm makes use of
the special coordinate basis for multivariable linear systems
(Sannuti & Saberi, 1987); see Appendix A. The design pro-
cedure is given below.

Step 1 Find nonsingular transformations Γx, Γu and Γy in
order to represent the system characterized by the matrix
triple (A,B,C) into the SCB as stated in Appendix A. To
that end, let

xi = Γxxi, yi = Γy col{yd,i,yb,i}, ui = Γu col{ud,i,uc,i} (6)

where xi = col{x−a,i,x+a,i,xb,i,xc,i,xd,i}, xd,i = col{x jd,i}, yd,i =

col{y jd,i} and ud,i = col{u jd,i}, ∀ j ∈ Ω , {1, · · · , r}; see
Appendix A. It yields the SCB for agent i ∈S:

ẋ−a,i = A−a x−a,i +L−adyd,i +L−abyb,i +G−a wi (7a)

ẋ+a,i = A+
a x+a,i +L+

adyd,i +L+
abyb,i +G+

a wi (7b)
ẋb,i = Abxb,i +Lbdyd,i +Gbwi (7c)
ẋc,i = Acxc,i +Lcdyd,i +Lcbyb,i

+Bc(uc,i +E−cax−a,i +E+
cax+a,i)+Gcwi (7d)

and for each j ∈Ω, there are:

ẋ jd,i=A jdx jd,i+L jdyd,i+B jd(u jd,i +E jxi)+G jdwi (7e)

In addition, y jd,i = C jdx jd,i, yd,i = Cdxd,i, and yb,i = Cbxb,i
where Cd = diag{C jd} ∀ j ∈ Ω. It is also used that G =
Γx stack{G−a ,G+

a ,Gb,Gc,Gd}where Gd = stack{G jd}, ∀ j ∈
Ω, where G jd ∈R jq j×ω . The dimensions of the variables as
well as the size and the structure of the matrices conform
with the SCB stated in Appendix A. Define the following
matrices

As =

[
A+

a L+
abCb

0 Ab

]
, Lsd =

[
L+

ad

Lbd

]
(8)

Step 2 Select the feedback gain matrices F+
a , Fb, Fc and

Fjd for j = 1, · · · , r such that the following matrices become
Hurwitz stable:

Acc = Ac−BcFc, A∗jd = A jd−B jdFjd, Ass = As−LsdFs

where Fs = [F+
a , Fb]. Since the pairs (Ac,Bc) and (A jd,B jd)

are controllable and the pair (As,Lsd) is stabilizable under
Assumption 1-(1), the existence of F+

a , Fb, Fc and Fjd is
guaranteed. The dimensions of the gains F+

a , Fb, Fc and Fjd
are pd×n+a , pd×nb, mc×nc, and q j× jq j, respectively.

Step 3 For every j = 1, · · · , r, define Š j ∈ R jq j× jq j as

Š j(ε) = diag{Iq j ,εIq j , · · · ,ε j−1Iq j} (9)

where ε ∈ (0,1] is the tuning parameter and will be specified
later. Also, for j = 1, · · · , r, define

Fjdε = ε
− jFjdŠ j Fdε = diag{Fjdε} (10)

Step 4 Form Fc ∈ Rmc×n and Fd ∈ Rmd×n as below.

Fc =
[

0 0 0 Fc 0 · · · 0
]
, Fd = Fdd +Fdε

where Fdd = stack{E j} for j = 1, · · · , r, and

Fdε =
[

0 FdεCT
d F+

a FdεCT
d Fb 0 Fdε

]
Now, find Fcon(ε) as

Fcon(ε) = Γu

[
Fd

Fc

]
Γ
−1
x (11)

Step 5 Find nonsingular transformations Γ̄x, Γ̄w and Γ̄y in
order to represent the system characterized by the matrix
triple (A,G,C) into the SCB as stated in Appendix A. For
simplicity, we keep the notation used in Step 1 unchanged
and place bars on the variables, matrices, and their dimen-
sions. Then choose

xi = Γ̄xx̄i, yi = Γ̄y

[
ȳd,i

ȳb,i

]
, wi = Γ̄w

[
wd,i

wc,i

]
(12)

where x̄i = col{x̄−a,i, x̄+a,i, x̄b,i, x̄c,i, x̄d,i}. It yields the SCB for
agent i ∈S:

˙̄x−a,i = Ā−a x̄−a,i + L̄−adȳd,i + L̄−abȳb,i + B̄−a ui (13a)
˙̄x+a,i = Ā+

a x̄+a,i + L̄+
adȳd,i + L̄+

abȳb,i + B̄+
a ui (13b)

˙̄xb,i = Ābx̄b,i + L̄bdȳd,i + B̄bui (13c)
˙̄xc,i = Ācx̄c,i + L̄cdȳd,i + L̄cbȳb,i

+ Ḡc(wc,i + Ē−cax̄−a,i + Ē+
cax̄+a,i)+ B̄cui (13d)
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and considering that x̄d,i = col{x̄ jd,i}, ȳd,i = col{ȳ jd,i}, and
wd,i = col{w jd,i}, ∀ j ∈ Ω̄ , {1, · · · , r̄}, there are:

˙̄x jd,i= Ā jdx̄ jd,i+L̄ jdȳd,i+Ḡ jd(w jd,i+ Ē j x̄i)+ B̄ jdui (13e)

Moreover, ȳ jd,i = C̄ jdx̄ jd,i, ȳd,i = C̄dx̄d,i where C̄d =

diag{C̄ jd}, ∀ j ∈ Ω̄, and ȳb,i = C̄bx̄b,i. Also, we have used the
following notation: B = Γ̄x stack{B̄−a , B̄+

a , B̄b, B̄c, B̄d} where
B̄d = stack{B̄ jd}, ∀ j ∈ Ω̄, where B̄ jd ∈R jq̄ j×m. The dimen-
sions of the variables and the size and the structure of the
matrices as well as the matrix partitioning conform with the
SCB stated in Appendix A. Define the following matrices

Ās =

[
Ā+

a 0

ḠcĒ+
ca Āc

]
, Ēds = stack{[Ē+

ja, Ē jc]} (14)

Step 6 Select K̄+
a and K̄c such that

Āss = Ās− K̄sdĒds where K̄sd =

[
K̄+

a

K̄c

]

is made Hurwitz stable. Such K̄sd exists under Assumption 1-
(2), which implies the pair (Ās, Ēds) is detectable. Let τ ∈
(0,β ], find P̄b = P̄T

b > 0 and P̄jd = P̄T
jd > 0 which solve the

following algebraic Riccati equations:

ĀbP̄b + P̄bĀT
b −2τP̄bC̄T

b C̄bP̄b =−In̄b

Ā jdP̄jd + P̄jdĀT
jd−2τP̄jdC̄T

jdC̄ jdP̄jd =−I jq̄ j

for every j ∈ Ω̄. Then, define

K̄b = P̄bC̄T
b , K̄ jd = P̄jdC̄T

jd, j ∈ Ω̄

The existence of such P̄b and P̄jd follows from the observ-
ability of the pairs (C̄b, Āb) and (C̄ jd, Ā jd). We point out that
K̄+

a , K̄b, K̄c, and K̄ jd have the dimensions of n̄+a × p̄d, n̄b× p̄b,
n̄c× p̄d and jq̄ j× q̄ j, respectively.

Step 7 Define the matrix S̄ j ∈R jq̄ j× jq̄ j , for every j ∈ Ω̄, as

S̄ j(ε̃ j) = diag{Iq̄ j , ε̃ jIq̄ j , · · · , ε̃
j−2
j Iq̄ j , ε̃

j−1
j Iq̄ j} (15)

where ε̃ j = ε
r̄
j . Also, for every j ∈ Ω̄, define

K̄ jdε = ε̃
−1
j S̄−1

j K̄ jd, K̄dε = diag{K̄ jdε} (16)

Step 8 Form Kb ∈ Rn×p̄b and Kdε ∈ Rn×p̄d as below:

Kdε = stack{0, K̄+
a ḠT

d K̄dε , 0, K̄cḠT
d K̄dε , K̄dε} (17a)

Kb = stack{0, 0, K̄b, 0, 0} (17b)

Let Ḡd = diag{Ḡ jd}, ∀ j ∈ Ω̄. Now, obtain Kobs(ε) using

Kobs(ε) = Γ̄x

[
Kdε Kb

]
Γ̄
−1
y (18)

Theorem 1 formalizes the result.

Theorem 1 Under Assumption 1 and for the set Gβ , the pa-
rameterized protocol (5), where Fcon(ε) is selected as in (11)
and Kobs(ε) is selected as in (18), solves Problem 1. Pre-
cisely, the following hold

(i) for any given β > 0, there exists an ε∗1 ∈ (0,1] such
that, for every ε ∈ (0,ε∗1 ], synchronization is accom-
plished in the absence of disturbance; i.e. ∀ε ∈ (0,ε∗1 ]
when w = 0

ei, j = yi− y j→ 0, ∀i, j ∈S, i > j as t→ ∞

(ii) for any given γ > 0, there exists an ε∗2 ∈ (0,ε∗1 ] such
that for every ε ∈ (0,ε∗2 ], the closed-loop transfer func-
tion from w to e satisfies ‖Twe(s)‖∞ < γ .

4 Simulation Result

A homogeneous network of four non-introspective agents is
considered as depicted in Fig. 1. Each agent is described by
the following state-space model:

ẋi =


−1 1 0

0 1 1

0 0 0

xi +


0

0

1

ui +


0

0

1

wi, yi =

[
0 1 0

0 0 1

]
xi

We intend to solve the problem of H∞ almost synchroniza-
tion for this networked dynamical system. Clearly, each
agent, which has one input and two outputs, satisfies As-
sumption 1. Notice that the system is already represented
in the SCB with respect to both B and G, and both the
SCB are identical; each system is left-invertible, minimum
phase, and it has one infinite zero of order one. Conse-
quently, it is straightforward to verify that Sb,ImG(A,G,C)
is empty. Thus, Assumption 1-(4) and (5) hold. Since ImG⊂
R∗KerC(A,B,C), Assumption 1-(3) also holds. We assume
that G ∈ Gβ with β = 3.5. Therefore, Theorem 1 ensures
that the problem is solvable using the controller (5).

According to Fig. 1, the eigenvalues of the Laplacian of the
communication network graph are 0,7,4± j2.2361. Taking
τ = 3.5, we found K̄d = 0.378 and K̄b = 0.5469. We also
select Fb = 5 and Fd = 20. The protocol gains, Kobs(ε) and
Fcon(ε), are given by

Kobs(ε) =


0 0

0 K̄b
1
ε

K̄d 0

 , Fcon(ε) =


0

1
ε

FdFb
1
ε

Fd


T
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We assume that wi(t) = i+ sin( i
2 t + π

i ). The result of the
simulation is shown in Fig. 2, where we have plotted ζ k,i =

∑
4
i=1 gi jyk, j for k = 1,2. Clearly, ζ k,i = 0 means yk,i = yk, j.

In Fig. 3, a comparison between ε = 0.01 and ε = 0.03 is
presented. Reducing ε results in a more accurate synchro-
nization.

Theorem 1 guarantees H∞ almost synchronization for suf-
ficiently small ε , which amplifies Fcon(ε) and Kobs(ε). In
other words, Theorem 1 provides lower bounds for Fcon(ε)
and Kobs(ε). However, for practical purposes where mea-
surements are corrupted with noise, these gains should be
tuned appropriately in order to ensure synchronization by
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Fig. 1. The communication topology of the network.
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Fig. 2. H∞ almost synchronization. The upper plot shows ζ 1,i and
the lower plot shows ζ 2,i.

Time(sec)

ǫ = 0.01

ζ 2
,i

Time(sec)

ǫ = 0.03

ǫ = 0.01

ζ 1
,i

ǫ = 0.03

12 14 16 18 2012 14 16 18 20

12 14 16 18 2012 14 16 18 20

−0.05

0

0.05

−0.05

0

0.05

−0.05

0

0.05

−0.05

0

0.05

Fig. 3. H∞ almost synchronization. A blow-up of the results for
ε = 0.01 and ε = 0.03. The upper plots show ζ 1,i and the lower
plots show ζ 2,i.

choosing sufficiently high, and to achieve the best perfor-
mance by limiting the magnitude of the gains.

5 Conclusion

We studied the problem of synchronization for multi-agent
systems with identical linear dynamics under directional
communication structures and in the presence of external
disturbances. Utilizing the time-scale assignment technique
and the geometric control theory, we proposed a family of
dynamic protocols ensuring any accuracy of synchroniza-
tion in the sense of the H∞ norm of the closed-loop transfer
function from disturbance to the synchronization error.
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A Special Coordinate Basis

The protocol development relies extensively on a special
coordinate basis (SCB) – see e.g. (Saberi et al., 2012, Chapter
3) – originally proposed by Sannuti & Saberi (1987). This
section is devoted to recall the SCB of linear systems and its
pertinent properties. Consider a linear, time-invariant system
described by

Σ : ẋ = Ax+Bu, y = Cx (A.1)

where A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. Also, x ∈ Rn is
the state, u ∈ Rm is the control, and y ∈ Rp is the output.
According to (Sannuti & Saberi, 1987), for any system Σ

characterized by the matrix triple (A,B,C), there exist

(i) unique coordinate-free non-negative integers n−a , n+a ,
nb, nc, nd, 1≤ r ≤ n, and q j, j = 1, · · · , r.

(ii) nonsingular state, output and input transformations Γx,
Γy, and Γu as x = Γxx̃, y = Γyỹ and u = Γuũ such that

x̃ = col{x−a ,x+a ,xb,xc,xd}, ỹ = col{yd,yb}, ũ = col{ud,uc}

where the states x−a , x+a , xb, xc, xd have dimensions n−a , n+a ,
nb, nc, and nd, respectively. Also,

ud,yd ∈ Rmd=pd uc ∈ Rmc yb ∈ Rpb

which implies p = pd + pb and m = md +mc. Moreover, xd,
ud and yd are partitioned as

xd = col{x jd} yd = col{y jd} ud = col{u jd}

for j = 1, · · · , r. Here, x jd ∈R jq j and u jd,y jd ∈Rq j . For every
j ∈ {1, · · · , r}, define

A jd =

[
0 Iq j( j−1)

0 0

]
, B jd =

[
0

Iq j

]
, C jd =

[
Iq j 0

]
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Clearly, A1d = 0, B1d =C1d = Iq1 . The transformations take
Σ into the SCB described by the following set of equations:

ẋ−a = A−a x−a +L−adyd +L−abyb (A.2a)
ẋ+a = A+

a x+a +L+
adyd +L+

abyb (A.2b)
ẋb = Abxb +Lbdyd (A.2c)
ẋc = Acxc +Lcdyd +Lcbyb +Bc(uc +E−cax−a +E+

cax+a )
(A.2d)

and for each j = 1, · · · , r, there are:

ẋ jd = A jdx jd +L jdyd +B jd(u jd +E jx̃) (A.2e)

where E j ∈ Rq j×n and is appropriately partitioned as

E j =
[

E−ja E+
ja E jb E jc E jd

]
, E jd =

[
E j1 · · · E jr

]
where E jk ∈Rq j×kqk for k = 1, · · · , r such that E jx̃=E−jax−a +

E+
jax+a +E jbxb +E jcxc +E jdxd. The outputs are given by

y jd =C jdx jd, yd =Cdxd, yb =Cbxb (A.2f)

where Cd = diag{C jd} for all j ∈ {1, · · · , r}. One may con-
sider that L1d = 0. The presented SCB explicitly reveals the
system’s finite and infinite zero structures and the invertibil-
ity properties. The invariant zeros of the system Σ are the
eigenvalues of A−a and A+

a . We presume that the eigenvalues
of A−a are located in C− and the eigenvalues of A+

a are lo-
cated in C+, assuming that the system has no invariant zeros
on the imaginary axis. Thus, the system is non-minimum
phase if x+a is existent.

The x jd subsystems show the infinite zero structure of the
system. Thus, Σ has jq j infinite zeros of order j. The sub-
systems xb and xc describe the invertibility properties of Σ.
The reader should refer to (Sannuti & Saberi, 1987; Saberi
et al., 2012) for details.

Clearly, (Cb,Ab) and (C jd,A jd) form observable pairs. In
fact, the system Σ is observable (detectable) if and only if
the pair (Cobs,Aobs) is observable (detectable), where

Cobs =
[

E−da E+
da Edc

]
, Aobs =


A−a 0 0

0 A+
a 0

BcE−ca BcE+
ca Ac


in which for j = 1, · · · , r

E−da = col{E−ja}, E+
da = col{E+

ja}, Edc = col{E jc}

Moreover, (Ac,Bc) and (A jd,B jd) form controllable pairs.
The system Σ is then controllable (stabilizable) if and only

if the pair (Acon,Bcon) is controllable (stabilizable), where

Acon =


A−a 0 L−abCb

0 A+
a L+

abCb

0 0 Ab

 Bcon =


L−ad

L+
ad

Lbd


The geometric subspaces can be expressed in terms of ap-
propriate unions of subspaces that describe the SCB of Σ.
According to (Ozcetin et al., 1992), we have the following
property which establishes a connection between the SCB
and the geometric subspaces.

Property 1 Suppose the state space is described by x−a ⊕
x+a ⊕ xb⊕ xc⊕ xd.

• x−a ⊕ xc⊕ xd spans Vb,KerC;
• x+a ⊕ xc spans Sb,ImB.

B Proof: Theorem 1

Estimation Error Dynamics for Agent ‘i’: We start the proof
by finding the estimation error dynamics for agent i ∈ S.
Define the estimation error as x̃i = xi− x̂i, and find the dy-
namics according to (1) and (5). It gives rise to

˙̃xi = Ax̃i +Gwi−Kobs(ε)(ζ i− ζ̂ i) (B.1)

where ζ i− ζ̂ i = ∑
N
j=1 gi jCx̃ j and Kobs(ε), which is given

by (18), is found using the coordinates corresponding to the
SCB with respect to the triple (A,G,C). Thus, using the
transformation matrices found in Step 5 (see Eq. (12)), we
transform (B.1) into that SCB. Let

x̃i = Γ̄xx̃i, Cx̃i = Γ̄y

[
ỹd,i

ỹb,i

]
, wi = Γ̄w

[
wd,i

wc,i

]

where x̃i = col{x̃−a,i, x̃+a,i, x̃b,i, x̃c,i, x̃d,i} in which x̃d,i =

col{x̃ jd,i}, ỹd,i = col{ỹ jd,i}, and wd,i = col{w jd,i} for all
j ∈ Ω̄ = {1, · · · , r̄}. The dimensions conform with Ap-
pendix A, but we place bars on the variables; for example,
x̃ jd,i ∈ R jq̄ j and w jd,i, ỹ jd,i ∈ Rq̄ j . It is observed that

ζ̃b,i = ∑
N
j=1 gi j ỹb, j, ζ̃ jd,i = ∑

N
k=1 gikỹ jd,k

and ζ̃d,i = col{ζ̃ jd,i} for j ∈ Ω̄. Then, in view of the SCB
given by (13) along with (16) and (17), one can write

˙̃x−a,i = Ā−a x̃−a,i + L̄−adỹd,i + L̄−abỹb,i

˙̃x+a,i = Ā+
a x̃+a,i + L̄+

adỹd,i + L̄+
abỹb,i− K̄+

a ḠT
d K̄dε ζ̃d,i

˙̃xb,i = Ābx̃b,i + L̄bdỹd,i− K̄bζ̃b,i
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˙̃xc,i = Ācx̃c,i + L̄cdỹd,i + L̄cbỹb,i

+ Ḡc(wc,i + Ē−cax̃−a,i + Ē+
cax̃+a,i)− K̄cḠT

d K̄dε ζ̃d,i

˙̃x jd,i = Ā jdx̃ jd,i + L̄ jdỹd,i + Ḡ jd(w jd,i + Ē j x̃i)− K̄ jdε ζ̃ jd,i

ỹ jd,i = C̄ jdx̃ jd,i, ỹd,i = C̄dx̃d,i, ỹb,i = C̄bx̃b,i

The structure of matrices follows from the SCB, explained
in Appendix A. For j ∈ Ω̄, define

Ē−da = stack{Ē−ja}, Ēdb = stack{Ē jb}, L̄dd = stack{L̄ jd}

L̄sb =

[
L̄+

ab

L̄cb

]
, L̄sd =

[
L̄+

ad

L̄cd

]
, Ḡs =

[
0

Ḡc

]

Define x̃s,i = col{x̃+a,i, x̃c,i}, and

z̃s,i = x̃s,i− K̄sdḠT
d x̃d,i (B.2)

where Ḡd = diag{Ḡ jd} for j ∈ Ω̄. In view of Step 6, one may
find ˙̃zs,i = Āssz̃s,i + Ē−sa x̃−a,i + Ēsbx̃b,i + Ēsdx̃d,i + Ḡsswi where
Ḡss = [−K̄sd, Ḡs]Γ̄

−1
w and

Ē−sa = ḠsĒ−ca− K̄sdĒ−da, Ēsb = L̄sbC̄b− K̄sdĒdb

Ēsd = ĀssK̄sdḠT
d + L̄sdC̄d− K̄sdḠT

d L̄ddC̄d− K̄sdĒdd

Recalling the scaling matrix S̄ j, in (15), we define
S̃ = diag{S̄ j} for all j ∈ Ω̄. Considering the matrix Ēsd,
one may demonstrate that ε r̄ĒsdS̃−1 = εĒsdε , indicating
that ‖εĒsdε‖ = O(ε). To show that, we partition Ēsd as
Ēsd = [Ēs1, Ēs2 , · · · , Ēsr̄] where Ēsk ∈R(n̄+a +n̄c)×kq̄k for every
k ∈ Ω̄; therefore, it is obtained

ε
r̄ĒsdS̃−1 = ε

r̄
[

Ēs1S̄−1
1 · · · Ēsr̄S̄−1

r̄

]
Since ‖ε r̄ĒskS̄−1

k ‖ = O(ε r̄ε̃
−(k−1)
k ) = O(ε̃k), one may

write ε r̄ĒskS̄−1
k = εĒskε for some appropriate Ēskε which

is uniformly bounded for all ε ∈ (0,1]. Therefore,
Ēsdε = [Ēs1ε , Ēs2ε , · · · , Ēsr̄ε ].

Denote Ē∗jd = Ē jsK̄sdḠT
d + Ē jd. Then, for every j ∈ Ω̄, one

may show that

(ε̃ jS̄ jL̄ jdC̄d + ε
r̄Ḡ jdĒ∗jd)S̃

−1 = εĒ jdε

for some Ē jdε which is uniformly bounded for all ε ∈ (0,1],
and ‖εĒ jdε‖= O(ε). Note that ‖ε̃ jS̄ jL̄ jdC̄dS̃−1‖= O(ε̃ j).

Consider the following state transformations

z̃sε,i = ε
r̄ z̃s,i, x̃ jdε,i = S̄ j x̃ jd,i (B.3)

and define x̃dε,i = col{x̃ jdε,i} for all j ∈ Ω̄. Let Ē js =

[Ē+
ja , Ē jc]. Consequently, the dynamics of the observation

error system are given by:

˙̃x−a,i = Ā−a x̃−a,i + L̄−adC̄dx̃dε,i + L̄−abỹb,i (B.4a)
˙̃xb,i = Ābx̃b,i + L̄bdC̄dx̃dε,i− K̄bζ̃b,i (B.4b)

˙̃zsε,i = Āssz̃sε,i + ε
r̄Ē−sa x̃−a,i + ε

r̄Ēsbx̃b,i

+ εĒsdε x̃dε,i + ε
r̄Ḡsswi (B.4c)

S̄ ˙̃xdε,i = Āddx̃dε,i + ε Ēddε x̃dε,i + ε
r̄ Ē−dax̃−a,i + ε

r̄ Ēdbx̃b,i

+ Ēdsz̃sε,i + ε
r̄ Ḡddwi− K̄ddζ̃d,i (B.4d)

where we have used the following notations, for all j ∈ Ω̄,

Ādd = diag{Ā jd} Ēddε = stack{Ē jdε}
Ē−da = ḠdĒ−da Ēdb = ḠdĒdb

Ēds = Ḡd stack{Ē js} Ḡdd = [Ḡd, 0]Γ̄−1
w

S̄= diag{ε̃ jI jq̄ j} K̄dd = diag{K̄ jd}

Note that ζ̃d,i = ∑
N
k=1 gikC̄dx̃dε,k.

Dynamics of Agent ‘i’ under Feedback: We obtain the dy-
namics of agent i, (1), under the feedback (5b). Clearly,
ui =−Fcon(ε)x̂i =−Fcon(ε)(xi− x̃i). Indeed, we obtain

ẋi = (A−BFcon(ε))xi +BFcon(ε)x̃i +Gwi

= (A−BFcon(ε))xi +BΓu

[
Fd

Fc

]
Γ
−1
x x̃i +Gwi

The state-feedback gain Fcon(ε) is calculated using the co-
ordinates corresponding to the SCB with respect to the triple
(A,B,C). Therefore, it makes sense to transform the equa-
tions into that coordinate. In Step 1, using (6), we found (7).
Thus, we intend to express uc,i and ud,i in terms of the coor-
dinates corresponding to the SCB with respect to the triple
(A,B,C), and apply them to system equations (7).

Representing x̃i in terms of the coordinates of the SCB
with respect to the triple (A,B,C), one may obtain x̃i =
Γx ˇ̃xi where ˇ̃xi = col{ ˇ̃x−a,i, ˇ̃x+a,i, ˇ̃xb,i, ˇ̃xc,i, ˇ̃xd,i} in which ˇ̃xd,i =

col{ ˇ̃x jd,i}, ∀ j ∈ Ω = {1, · · · , r}, where ˇ̃x jd,i ∈ R jq j . It clar-
ifies that there exists a relation between estimation errors
expressed in these two SCB, which is given by ˇ̃xi = Γ−1

x Γ̄xx̃i.

That is, the components of one can be expressed as a linear
combination of the other’s components. According to Prop-
erty 1, one can show

• ˇ̃x−a,i⊕ ˇ̃xc,i⊕ ˇ̃xd,i spans Vb,KerC(A,B,C);
• x̃+a,i⊕ x̃c,i spans Sb,ImG(A,G,C).

In accordance with Assumptions 1-(4),(5), we obtain

(x̃+a,i⊕ x̃c,i)⊂ ( ˇ̃x−a,i⊕ ˇ̃xc,i⊕ ˇ̃xd,i),

(x̃+a,i⊕ x̃c,i)⊂ KerC
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The computation of the orthogonal complements of the
above sub-spaces results in

( ˇ̃x+a,i⊕ ˇ̃xb,i)⊂ (x̃−a,i⊕ x̃b,i⊕ x̃d,i),

(KerC)⊥ ⊂ (x̃−a,i⊕ x̃b,i⊕ x̃d,i)

It is observed that C jd ˇ̃x jd,i = ˇ̃x j1d,i ∈ (KerC)⊥ for all j ∈Ω.
Therefore, for all j ∈Ω and every i ∈S, one concludes that

• Assumptions 1-(4),(5) imply that ˇ̃x j1d,i, ˇ̃x+a,i and ˇ̃xb,i are
expressed in terms of x̃−a,i, x̃b,i and x̃d,i.
• Assumption 1-(3) implies that G+

a = Gb = 0 since ImG
is spanned by x−a,i, xc,i, and xd,i.

Partition F+
a and Fb such that F+

a = stack{F+
ja} and Fb =

stack{Fjb} for all j ∈ Ω, where F+
ja ∈ Rq j×n+a and Fjb ∈

Rq j×nb . Define Fjs = [F+
ja , Fjb]; thus, Fs = stack{Fjs} for all

j ∈Ω. Denote xs,i = col{x+a,i,xb,i}.

Define s jd,i = Fjsxs,i + y jd,i and z jd,i =CT
jdFjsxs,i + x jd,i. Let

sd,i = col{s jd,i} and zd,i = col{z jd,i} for all j ∈Ω. It implies
that s jd,i =C jdz jd,i and sd,i = Fsxs,i + yd,i. According to (8),
ẋs,i = Assxs,i +Lsdsd,i. In light of the geometric assumptions
and the state-feedback gain (11), we obtain

uc,i =−Fc(xc,i− ˇ̃xc,i) (B.5a)
u jd,i =−E jxi−Fjdε z jd,i + ũ j1,i + ũ j2,i (B.5b)

where ũ j1,i = E−ja ˇ̃x−a,i + E+
ja

ˇ̃x+a,i + E jb ˇ̃xb,i + E jc ˇ̃xc,i + E jd ˇ̃xkd,i

and ũ j2,i = Fjdε(CT
jdF+

ja
ˇ̃x+a,i +CT

jdFjb ˇ̃xb,i + ˇ̃x jd,i). From the
assumptions on the geometric subspaces, it follows that
BcFc ˇ̃xc,i is a linear combination of the components of x̃i; i.e.

BcFc ˇ̃xc,i = M−cax̃−a,i +Mcbx̃b,i +Mcsz̃s,i +Mcdx̃d,i

where z̃s,i is defined in (B.2), and M−ca, Mcb, Mcs, and Mcd
are some constant matrices independent of ε . In view of the
scalings (B.3), BcFc ˇ̃xc,i is modified to

BcFc ˇ̃xc,i = M−cax̃−a,i +Mcbx̃b,i + ε
−r̄Mcsz̃sε,i + ε

−(r̄−1)Mcdε x̃dε,i

where we have used the fact that McdS̃−1 = ε−(r̄−1)Mcdε

where Mcdε is uniformly bounded for all ε ∈ (0,1] since
‖McdS̃−1‖ = O(ε−(r̄−1)). Likewise, there exist some con-
stant matrices M−ja, M jb, M js, and M jd for j ∈ Ω that

M jdS̃−1 = ε−(r̄−1)M jdε , where M jdε is uniformly bounded
for all ε ∈ (0,1], such that

B jdũ j1,i = M−jax̃−a,i +M jbx̃b,i + ε
−r̄M jsz̃sε,i + ε

−(r̄−1)M jdε x̃dε,i

We also need to express B jdũ j2,i in terms of x̃i to be able
to close the loop around agent i. For every j ∈Ω, partition

Fjd = [Fj1d, · · · ,Fj jd] where Fjkd ∈ Rq j×q j for k = 1, · · · , j.
Then, one can show that B jdũ j2,i is equal to

ε
− jB jdFjd

(
CT

jdF+
ja

ˇ̃x+a,i +CT
jdFjb ˇ̃xb,i

)
+ ε
− jB jdFj1d ˇ̃x j1d,i

+ ε
− jB jd ∑

j
k=2 Fjkdε

k−1 ˇ̃x jkd,i (B.6)

in which we have used the fact that ˇ̃x jd,i = col{ ˇ̃x jkd,i},
ˇ̃x jkd,i ∈ Rq j , for all k = 1, · · · , j and every j ∈ Ω. Ac-
cording to Assumptions 1-(4),(5), the first line of (B.6)
depends only on x̃−a,i, x̃b,i and x̃d,i. Therefore, there exist
some constant matrices N−ja, N jb, and N jd for each j ∈ Ω,
independent of ε such that the first line of (B.6) is de-
scribed by ε− j(N−jax̃−a,i + N jbx̃b,i + ε−(r̄−1)N jdε x̃dε,i) where

N jdS̃−1 = ε−(r̄−1)N jdε , where N jdε is uniformly bounded
for all ε ∈ (0,1]. Similarly, ˇ̃x jkd,i for k = 2, · · · , j and j ∈Ω

can be expressed as a linear combination of components of
x̃i. Thus, we get

B jd ∑
j
k=2 Fjkdε

k−1 ˇ̃x jkd,i = ε ∑
j
k=2 ε

k−2(M̌−jkax̃−a,i + M̌ jkbx̃b,i

+ ε
−r̄M̌ jksz̃sε,i + ε

−(r̄−1)M̌ jkε x̃dε,i)

It is straightforward to verify that M̌ jkε , k = 2, · · · , j and
j ∈Ω, is uniformly bounded for all ε ∈ (0,1]. Denoting

M̌ jd = ∑
j
k=2 ε

k−2M̌ jkε , M̌ js = ∑
j
k=2 ε

k−2M̌ jks

M̌−ja = ∑
j
k=2 ε

k−2M̌−jka, M̌ jb = ∑
j
k=2 ε

k−2M̌ jkb

which are all uniformly bounded in ε . Thus, it turns
out that B jd ∑

j
k=2 Fjkdεk−1 ˇ̃x jkd,i = εM̌−jax̃−a,i + εM̌ jbx̃b,i +

ε−(r̄−1)M̌ jsz̃sε,i +ε−(r̄−2)M̌ jdx̃dε,i. Now, we are ready to find
the closed-loop equations. Considering (9), we introduce
the state transformations:

x−aε,i = εx−a,i, xcε,i = εxc,i, z jdε,i = Š jz jd,i (B.7)

Denote zdε,i = col{z jdε,i} ∀ j ∈ Ω. In light of Step 2, one
may demonstrate the dynamics of the systems as

ẋ−aε,i = A−a x−aε,i + εL−asxs,i + εL−adCdzdε,i + εG−a wi

ẋs,i = Assxs,i +LsdCdzdε,i

ẋcε,i = Accxcε,i +BcE−cax−aε,i + εEcsxs,i + εLcdCdzdε,i

+ εGcwi + εM−cax̃−a,i + εMcbx̃b,i

+ ε
−(r̄−1)(Mcsz̃sε,i + εMcdε x̃dε,i)

ε żdε,i = Addzdε,i + εLddzdε,i + εLdsxs,i + εGddwi

+ εM−dax̃−a,i + εMdbx̃b,i + ε
−(r̄−1)Mdsz̃sε,i

+ ε
−(r̄−2)Mddx̃dε,i + ε

−(r̄−1)Nddx̃dε,i

+N−dax̃−a,i +Ndbx̃b,i

where L−as = −L−adFs + [0, L−abCb] and Ecs = −LcdFs +
[BcE+

ca, LcbCb]. Also, for j ∈ Ω, we have defined
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L∗jd =CT
jdFjsLsd +L jd, L js =CT

jdFjsAss−L jdFs, and

Add = diag{A∗jd} Gdd = stack{Š jG jd}
Ldd = stack{Š jL∗jd}Cd Lds = stack{Š jL js}
M−da = stack{ε j−1M−ja + M̌−ja}
Mdb = stack{ε j−1M jb + M̌ jb} N−da = stack{N−ja}
Mds = stack{ε j−1M js + M̌ js} Ndb = stack{N jb}
Mdd = stack{ε j−1M jdε + M̌ jd} Ndd = stack{N jdε}

Closed-loop Equations for Agent i - Compact Form: Define

z̃i = col{x̃−a,i, x̃b,i, x̃dε,i, z̃sε,i}, zi = col{xcε,i,xs,i,x−aε,i,zdε,i}
¯A = diag{Ā−a , Āb, Ādd, Āss}, A = diag{Acc,Ass,A−a ,Add}

S̄ = diag{I, I, S̄, I}, S = diag{I, I, I,εI}

Now, the closed-loop equations are recast as

S żi = A zi +L zi + ε E wi +D z̃i (B.8a)

S̄ ˙̃zi = ¯A z̃i + L̄ z̃i + ε
r̄Ē wi−∑

N
k=1 gikD̄ z̃k (B.8b)

where L = εLε +L0, ‖εLε‖=O(ε) and L̄ = εL̄ε +L̄0,
‖εL̄ε‖ = O(ε); also D = Dε + ε−(r̄−1)D0. The norms of
L0, L̄0, D0, D̄ , E , and Ē are uniformly bounded for all ε .

Lε =


0 Ecs 0 LcdCd

0 0 0 0

0 L−as 0 L−adCd

0 Lds 0 Ldd

 , L0 =


0 0 BcE−ca 0

0 0 0 LsdCd

0 0 0 0

0 0 0 0



L̄ε =


0 0 0 0

0 0 0 0

ε r̄−1Ē−da ε r̄−1Ēdb Ēddε 0

ε r̄−1Ē−sa ε r̄−1Ēsb Ēsdε 0

 , Ē =


0

0

Ḡdd

Ḡss



L̄0 =


0 L̄−abC̄b L̄−adC̄d 0

0 0 L̄bdC̄d 0

0 0 0 Ēds

0 0 0 0

 , E =


Gc

0

G−a
Gdd



D̄ =


0 0 0 0

0 K̄bC̄b 0 0

0 0 K̄ddC̄d 0

0 0 0 0

 , D0 =


0 0 0 Mcs

0 0 0 0

0 0 0 0

0 0 Ndd Mds



Dε =


εM−ca εMcb ε−(r̄−2)Mcdε 0

0 0 0 0

0 0 0 0

εM−da +N−da εMdb +Ndb ε−(r̄−2)Mdd 0



Closed-loop Equations for the Multi-agent System: Collect
the states as χ = col{zi}, χ̃ = col{z̃i} for all i ∈S. Then,
the collective dynamics are described by

(IN⊗S )χ̇ = (IN⊗A )χ +(IN⊗L )χ

+ ε(IN⊗E )w+(IN⊗D)χ̃ (B.9a)
(IN⊗ S̄ ) ˙̃χ =

(
(IN⊗ ¯A )− (G⊗ D̄)

)
χ̃

+(IN⊗ L̄ )χ̃ + ε
r̄(IN⊗ Ē )w (B.9b)

Recall yd,i = col{y jd,i} for all j ∈Ω and every agent i ∈S.
Thus, we obtain y jd,i =C jdz jdε,i−Fjsxs,i. In addition, yb,i =
[0, Cb]xs,i. It implies there exists a matrix Γ∗y, independent
of ε , such that yi = ΓyΓ∗yzi. Therefore, in view of (2), ζ =

(G ⊗ΓyΓ∗y)χ .

Let 1,1L ∈ RN : G1 = 0 and 1T
LG = 0. Suppose the Jordan

form of G is obtained using the matrix U which is cho-
sen as U = [Ū , 1]⇒ (U−1)T = [ŪL, 1L]. Thus, one can find
the Jordan form as U−1GU = diag{∆,0}. It implies that
GU = [Ǧ, 0] where Ǧ = Ū∆. We introduce the following
state transformations[

e

e0

]
= (U−1⊗ In)χ,

[
ẽ

ẽ0

]
= (U−1⊗ In) χ̃ (B.10)

where e0, ẽ0 ∈ Rn. Denote N̄ = N− 1. Then, we find two
sets of equations. The first set is given as bellow.

(IN̄⊗S )ė = (IN̄⊗ (A +L0))e+ ε(IN̄⊗Lε)e

+ ε
−(r̄−1) (IN̄⊗ (ε r̄−1Dε +D0)

)
ẽ

+ ε(ŪT
L ⊗E )w (B.11a)

(IN̄⊗ S̄ ) ˙̃e =
(
IN̄⊗ ( ¯A + L̄0)−∆⊗ D̄

)
ẽ

+ ε(IN̄⊗ L̄ε)ẽ+ ε
r̄(ŪT

L ⊗ Ē )w (B.11b)

and ζ = (Ǧ ⊗ ΓyΓ∗y)e. The state (e0, ẽ0) determines the
agreement trajectories when ζ = 0.

H∞ Analysis: Consider the reduced-order system (B.11) with
the controlled output ζ . Choose ρ > 0 such that ζ

T
ζ ≤

ρ2 eTe for all ε ∈ (0,1].

The matrix A is Hurwitz stable because A−a , Ass, Acc, and
A∗jd, ∀ j ∈ Ω, are Hurwitz stable. Due to the upper block-
triangular structure of L0 where the blocks along the diag-
onal are zero, the matrix (IN̄⊗ (A +L0)) is upper block-
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triangular and Hurwitz stable. Therefore, there exists a sym-
metric Q > (ρ2 +4)In such that the Lyapunov equation:

(A +L0)
TP +P(A +L0) =−Q

has a unique positive definite and symmetric solution P
which is block-diagonal with the block sizes that correspond
to the block sizes in S . It guarantees that P and S com-
mute. Choose Vc = eT(IN̄⊗S P)e, and differentiate it along
the trajectories of (B.11a); it gives rise to

V̇c ≤−ζ
T

ζ −3‖e‖2− (1−2εµε)‖e‖2

+2ε
−(r̄−1)

µdε‖e‖‖ẽ‖+2εµw‖e‖‖w‖

where µε ≥ maxε∈(0,1] ‖PLε‖, µw ≥ ‖(ŪT
L ⊗PE )‖, and

µdε ≥maxε∈(0,1]‖P(ε r̄−1Dε +D0)‖. Since µε is bounded,
there exists a sufficiently small ε11 ∈ (0,1] such that 1−
2εµε > 0 for every ε ∈ (0,ε11]. Therefore,

V̇c ≤−ζ
T

ζ −3‖e‖2 +2ε
−(r̄−1)

µdε‖e‖‖ẽ‖+2εµw‖e‖‖w‖

In (B.11b), let ¯A ∗ =
(
(IN̄⊗ ( ¯A + L̄0)− (∆⊗ D̄)

)
. From

the structure of ∆, it is observed that ¯A ∗ is upper block-
triangular. Thus, ¯A ∗ is Hurwitz stable iff all matrices on the
main diagonal are Hurwitz stable. In other words, ¯A +L̄0−
λ D̄ must be Hurwitz stable for all λ ’s which are nonzero
eigenvalues of the Laplacian matrix G. Notice that since
G ∈ Gβ , Re(λ )> β > 0 if λ 6= 0. Since ¯A −λ D̄ is a block-
diagonal matrix and L̄0 is upper block-triangular where the
blocks along the diagonal are zero, the eigenvalues of ¯A ∗ are
determined by the eigenvalues of Ā−a , Āss, Ābb = Āb−λ K̄bC̄b,
and Ā∗jd = Ā jd−λ K̄ jdC̄ jd.

Ā−a is Hurwitz stable by definition, and Āss was made Hur-
witz stable in Step 6. According to Step 6, it can be con-
firmed that Ābb and Ā jd, ∀ j ∈ Ω̄, are Hurwitz stable. To see
that we recall K̄b = P̄bC̄T

b and β ≥ τ; therefore, we can show

ĀbbP̄b + P̄bĀH
bb = ĀbP̄b + P̄bĀT

b −2Re(λ )P̄bC̄T
b C̄bP̄b

= ĀbP̄b + P̄bĀT
b −2τP̄bC̄T

b C̄bP̄b

−2(Re(λ )− τ)P̄bC̄T
b C̄bP̄b ≤−In̄b

It follows that Ābb is Hurwitz stable. Similarly, it is confirmed
that Ā∗jd’s are Hurwitz stable. Hence, ¯A + L̄0− λiD̄ and

¯A ∗ are Hurwitz stable for every nonzero λi. Accordingly,
for λi, i = 1, · · · ,N−1, there exists a symmetric Q̃i > 0 such
that the Lyapunov equation

( ¯A + L̄0−λiD̄)HP̃i + P̃i( ¯A + L̄0−λiD̄) =−Q̃i

has a unique solution P̃i = P̃T
i > 0 which is block-diagonal

with the block sizes that correspond to the block sizes in S̄ .
Let q̃i > 0 be such that q̃iI≤ Q̃i, and η̃i = ‖P̃iD̄‖. Following

the proof of Proposition 1 in (Peymani et al., 2014), we can
show that the block diagonal matrix P̃ constructed as

P̃ = diag{δ1P̃1, · · · ,δN−1P̃N−1} (B.12)

where δN−1 = 1 and δi = δi+1q̃iq̃i+1/9η̃2
i for i= 1, · · · ,N−2

(implying ‖P̃‖ is bounded for any β > 0) solves the Lya-
punov function ( ¯A ∗)HP̃+P̃ ¯A ∗ =−Q̃ for some symmet-
ric Q̃ > (3+ µ2

dε
)IN̄n. Considering that P̃ and (IN̄ ⊗ S̄ )

commute, we choose Vo = ẽT(IN̄⊗S̄ )P̃ ẽ, and take deriva-
tive

V̇o ≤−(2+µ
2
dε)‖ẽ‖2− (1−2ερ̃ε)‖ẽ‖2 +2ε

r̄
ρ̃w‖ẽ‖‖w‖

where ρ̃ε ≥ maxε∈(0,1]‖P̃(IN̄ ⊗ L̄ε)‖ and ρ̃w ≥ ‖P̃(ŪT
L ⊗

Ē )‖. Because P̃ is bounded for all β > 0 (i.e. for all network
graphs G ∈ Gβ ), ρ̃ε and ρ̃w are bounded for all β > 0. Ac-
cordingly, there exists an ε22 ∈ (0,1] such that 1−2ερ̃ε > 0
for every ε ∈ (0,ε22]; thus, for every ε ∈ (0,ε22], we obtain

V̇o ≤−(2+µ
2
dε)‖ẽ‖2 +2ε

r̄
ρ̃w‖ẽ‖‖w‖

Choose V = Vc + ε−2(r̄−1)Vo. Let ε∗1 = min{ε11,ε22}. For
every ε ∈ (0,ε∗1 ], an upper bound on V̇ is given by

V̇ ≤−ζ
T

ζ −3‖e‖2 +2ε
−(r̄−1)

µdε‖e‖‖ẽ‖
+2εµw‖e‖‖w‖

− ε
−2(r̄−1)(2+µ

2
dε)‖ẽ‖2 +2ε

−(r̄−2)
ρ̃w‖ẽ‖‖w‖

≤ −ζ
T

ζ −2‖e‖2−2ε
−2(r̄−1)‖ẽ‖2

+2ε(µw‖e‖+ ε
−(r̄−1)

ρ̃w‖ẽ‖)‖w‖
−‖e‖2 +2ε

−(r̄−1)
µdε‖e‖‖ẽ‖− ε

−2(r̄−1)
µ

2
dε‖ẽ‖2

The third line is equal to −(‖e‖−ε−(r̄−1)µdε‖ẽ‖)2 ≤ 0. De-
note σw =

√
2max{µw, ρ̃w}. Then, one may write

V̇ ≤−ζ
T

ζ −2‖e‖2−2ε
−2(r̄−1)‖ẽ‖2

+2εσw

√
‖e‖2 + ε−2(r̄−1)‖ẽ‖2 ‖w‖

where we have used the fact that ‖x‖+‖y‖ ≤
√

2
√

x2 + y2.
Completing the square results in

V̇ ≤−ζ
T

ζ −‖e‖2− ε
−2(r̄−1)‖ẽ‖2 +(εσw)

2‖w‖2

Hence, from the Kalman-Yakubovich-Popov Lemma, it fol-
lows that ‖Twζ‖∞ ≤ εσw. We need to show that the impact
of w on every mutual disagreement ei, j can be made arbi-
trarily small. We define ei, j = T i, j

we (s)w, i, j ∈S, i > j.

From (Peymani et al., 2014, Lemma 3), it follows that there
exists σ̂ > 0 such that ‖T i, j

we‖∞ < εσ̂ . Therefore, for any given
γ > 0, there exists an ε∗2 ∈ (0,ε∗1 ] such that every ε ∈ (0,ε∗2 ]
yields ‖T i, j

we‖∞ < γ .
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